iFeel: A Web System that Compares and Combines Sentiment Analysis Methods
نویسندگان
چکیده
Sentiment analysis methods are used to detect polarity in thoughts and opinions of users in online social media. As businesses and companies are interested in knowing how social media users perceive their brands, sentiment analysis can help better evaluate their product and advertisement campaigns. In this paper, we present iFeel, a Web application that allows one to detect sentiments in any form of text including unstructured social media data. iFeel is free and gives access to seven existing sentiment analysis methods: SentiWordNet, Emoticons, PANAS-t, SASA, Happiness Index, SenticNet, and SentiStrength. With iFeel, users can also combine these methods and create a new Combined-Method that achieves high coverage and F-measure. iFeel provides a single platform to compare the strengths and weaknesses of various sentiment analysis methods with a user friendly interface such as file uploading, graphical visualizing, and weight tuning.
منابع مشابه
iFeel 2.0: A Multilingual Benchmarking System for Sentence-Level Sentiment Analysis
Sentiment analysis became a hot topic, specially with the amount of opinions available in social media data. With the increasing interest in this theme, several methods have been proposed in the literature. Recent efforts have showed that there is no single method that always achieves the best prediction performance for different datasets. Additionally, novel methods have not being extensively ...
متن کاملEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملMHSubLex: Using Metaheuristic Methods for Subjectivity Classification of Microblogs
In Web 2.0, people are free to share their experiences, views, and opinions. One of the problems that arises in web 2.0 is the sentiment analysis of texts produced by users in outlets such as Twitter. One of main the tasks of sentiment analysis is subjectivity classification. Our aim is to classify the subjectivity of Tweets. To this end, we create subjectivity lexicons in which the words into ...
متن کامل2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework
Big data analytics is one of the most important subjects in computer science. Today, due to the increasing expansion of Web technology, a large amount of data is available to researchers. Extracting information from these data is one of the requirements for many organizations and business centers. In recent years, the massive amount of Twitter's social networking data has become a platform for ...
متن کاملDiversity-Aware Clustering of SIOC Posts
Sentiment analysis as well as topic extraction and named entity recognition are emerging methods used in the field of Web Mining. Next to SQL-like querying and according visualization, new ways of organization have become possible. In this demo paper we apply efficient clustering algorithms that stem from the image retrieval field to sioc:Post entities, blending similarity scores of sentiment a...
متن کامل